1,10 + 16842

ISSN 0097-4463

ANNALS of CARNEGIE MUSEUM OF NATURAL HISTORY 4400 FORBES AVENUE • PITTSBURGH, PENNSYLVANIA 15213 VOLUME 49 24 DECEMBER 1980 ARTICLE 25

RESULTS OF THE ALCOA FOUNDATION-SURINAME EXPEDITIONS. IV. A NEW SPECIES OF BAT OF THE GENUS *MOLOSSOPS* (MAMMALIA: MOLOSSIDAE)

STEPHEN L. WILLIAMS Collection Manager, Section of Mammals

> HUGH H. GENOWAYS Curator, Section of Mammals

Abstract

A new species of molossid bat of the genus *Molossops* is described from Suriname. The new species is a member of the subgenus *Molossops* where it is distinguished from the other two member species, *temminckii* and *aequatorianus*, by larger external and cranial size. A single specimen of the species was taken in northern Suriname in an area of savannah and secondary forest.

INTRODUCTION

Three species of the molossid genus *Molossops (planirostris, greenhalli,* and *abrasus)* are included in the 85 species of bats known to occur in Suriname (Husson, 1962, 1978; Genoways and Williams, 1979; Williams and Genoways, 1980). Among the specimens taken during our expedition to Suriname in 1977 is a specimen of *Molossops* that apparently does not belong to one of these species or any other described species in the genus.

Our study of the relationship of the new species has led us to review the relationships of *Molossops* and *Cynomops*. We have concluded

Submitted for publication 6 June 1980.

ANNALS OF CARNEGIE MUSEUM

VOL. 49

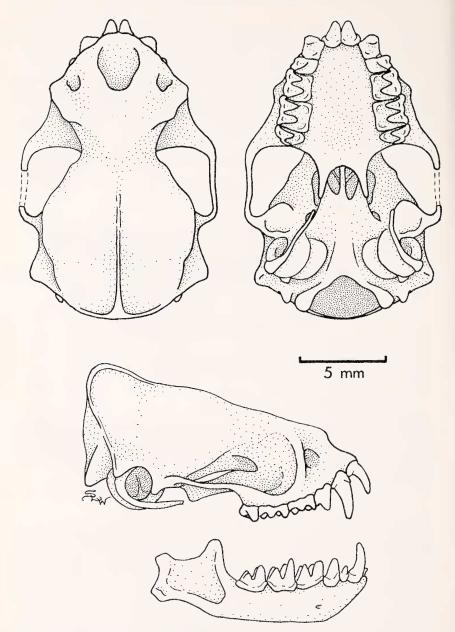


Fig. 1.—Dorsal, ventral, and lateral views of the cranium and lateral view of the lower jaw of the holotype of *Molossops neglectus* (CM 53864).

that these taxa should be considered as distinct subgenera as was done by Cabrera (1958) and Goodwin and Greenhall (1961) based primarily upon the characters given by Thomas (1920). Gardner (1977) documented the karyotypical differences between these groups, but he did not draw any final conclusions as to their relationships. We believe that the new species is a member of the subgenus *Molossops* because it shares many characters with *M. temminckii*. The new species is named and described below.

Systematics

Molossops (Molossops) neglectus, new species

Holotype.—Adult female, skin and skull, no. 53864 Carnegie Museum of Natural History (CM); 1 km S, 2 km E Powaka, Suriname, Suriname ($5^{\circ}25'N$, $55^{\circ}03'W$); obtained 10 August 1977 by Stephen L. Williams; original number 2703.

Distribution.—Known only from the type locality.

Diagnosis.—Size large for the subgenus (Fig. 1; Table 1); two lower incisors; M^3 complex with a third commissure making the tooth broader labially than lingually; M_3 complex with the talonid composed of two cusps; ears pointed; color of the venter uniform.

Measurements.—External measurements of the holotype are as follows: total length, 89; length of tail, 29; length of hind foot, 7; length of ear from notch, 14; length of calcar, 12.3. Length of forearm and cranial measurements for *M. neglectus* as compared with other species of *Molossops* are given in Table 1.

Description.—Hairs of the dorsum 3.0 to 3.5 mm long; base of hair pale yellowishwhite; remainder of hair shaft Mummy Brown (capitalized color terms from Ridgway, 1912). Hairs on the venter about 3.0 mm long; basal portion of the hair shaft yellowishwhite; overall coloration of the venter Buffy Brown, paler than dorsum. Membranes dark blackish-brown.

Ears pointed rather than rounded as in most molossids; more nearly resembling a vespertilionid ear. Antitragus about 2.3 mm, rounded, about as wide as high; tragus about 1.5 mm with a broadly rounded tip. Free portion of tail about one-third the length of entire tail.

Dental formula 1/1, 1/1, 1/2, 3/3. Upper incisors relatively large, being over half the length of the canines, and filling space between them. Lower incisors small, bifid (Fig. 2). First lower premolar considerably smaller than second. Third upper molar complex having a third commissure-a postcentrocrista extends from the mesostyle to a relatively well-developed metacone; postcentrocrista about two-thirds the length of the precentrocrista (dental nomenclature from Phillips, 1971). Third lower molar also complex; talonid composed of two cusps, a hypoconid and an entoconid with associated entocristid.

Sagittal crest present, forming a helmet at occiput; profile of skull slopes up from nasal aperture to the posterior end of the helmet; space between nasal aperture and lacrimal ridge relatively broad (3.0 mm).

Comparisons.—Molossops neglectus shares many characters with M. temminckii; however, the two are easily distinguished on the basis

Locality	Length of forearm	Greatest length of skull	Condylobasal Iength	Zygomatic Zygomatic	Postorbital breadth	Breadth of braincase	Length of maxillary toothrow	Lacrimal breadth	Mastoid breadth	upper molars Breadth across	Length of mandibular toothrow	to digna.J skibnsm
W	5	ps neg	i.e.									
1 km S, 2 km E Powaka, Suriname 3	35.1	17.1	15.4 1	11.0	4.1	8.8	6.3	7.5	10.0	7.7	7.5	12.2
W	olossolo	ns tem	Molossops temminckii									
			12.6	8.5	3.9	7.3	5.2	5.7	8.4	6.3	5.7	9.2
				9.0	3.8	7.2	5.0	5.8	8.6	6.5	5.6	10.1
			13.0	9.1	3.8	7.4	5.2	5.7	8.4	6.6	5.8	10.1
	27.7	13.2	12.3	8.7	3.7	6.8	4.8	5.7	8.0	6.2	5.3	8.8
		14.2	13.0	9.1	3.7	7.2	5.2	6.1	8.3	6.4	5.6	10.5
Río		14.6	13.4	9.4	3.8	7.4	5.7	6.0	8.7	6.8	6.0	10.2
		1 7 1	7 7 7	5	5	7 0	5.0	\$ \$	0 4	63	v v	0 3
		Ē		2		2	2		2	3	j	?
		14.5	13.2	8.8	3.7	7.1	5.3	5.9	8.5	6.5	5.9	10.0
		2 2	12.2	5 8	4	69	4 8	8	979	6 2	5 3	9.6
				}		}		2			2	ł
			13.3	8.9	3.6	7.0	5.4	6.2	8.0	6.5	5.5	10.2
	cio, atalina, atalina,			30.5 14.2 12.6 29.6 14.0 12.8 29.7 14.4 13.0 27.7 13.2 12.3 30.6 14.2 13.0 30.8 14.6 13.0 30.4 14.1 12.7 30.4 14.1 12.7 31.5 14.5 13.2 31.6 14.5 13.2 31.6 14.1 12.7 31.5 14.5 13.2 31.6 13.2 12.7 31.6 14.5 13.2 31.6 14.5 13.2 31.6 13.2 12.2 31.4 14.3 13.3	30.5 14.2 12.6 29.6 14.0 12.8 29.7 14.4 13.0 27.7 13.2 12.3 30.6 14.2 13.0 30.8 14.6 13.4 30.4 14.1 12.7 30.4 14.1 12.7 31.5 14.5 13.2 31.6 14.5 13.2 31.6 14.5 13.2 31.6 14.5 13.2 31.6 14.5 13.2 31.6 14.5 13.2 31.6 14.5 13.2 31.4 14.3 13.3	30.5 14.2 12.6 8.5 29.6 14.0 12.8 9.0 29.7 14.4 13.0 9.1 29.7 14.4 13.0 9.1 27.7 13.2 12.3 8.7 30.6 14.2 13.0 9.1 30.4 14.1 12.7 8.3 31.5 14.5 13.2 8.8 31.6 14.1 12.7 8.3 31.5 14.5 13.2 8.8 31.6 14.1 12.7 8.3 31.6 13.2 13.2 8.8 31.6 14.5 13.2 8.8 31.4 14.3 13.3 8.9	30.5 14.2 12.6 8.5 3.9 29.6 14.0 12.8 9.0 3.8 29.7 14.4 13.0 9.1 3.8 27.7 13.2 12.3 8.7 3.7 30.6 14.2 13.0 9.1 3.8 30.6 14.4 13.0 9.1 3.7 30.8 14.6 13.4 9.4 3.8 30.4 14.1 12.7 8.3 3.7 31.5 14.5 13.2 8.8 3.7 31.5 14.5 13.2 8.8 3.7 31.5 14.5 13.2 8.8 3.7 31.4 14.3 13.3 8.9 3.6 31.4 14.3 13.3 8.9 3.6	30.5 14.2 12.6 8.5 3.9 7.3 5.2 29.6 14.0 12.8 9.0 3.8 7.2 5.0 29.7 14.4 13.0 9.1 3.8 7.4 5.2 29.7 14.4 13.0 9.1 3.8 7.4 5.2 30.6 14.2 13.0 9.1 3.7 6.8 4.8 30.6 14.2 13.0 9.1 3.7 7.2 5.2 30.8 14.6 13.4 9.4 3.8 7.4 5.7 30.4 14.1 12.7 8.3 3.7 7.0 5.0 31.5 14.5 13.2 18.8 3.7 7.0 5.0 31.5 14.5 13.2 8.8 3.7 7.1 5.3 31.0 13.2 12.2 8.5 3.4 6.9 4.8 31.4 14.3 13.3 8.9 3.6 7.0 5.4	30.5 14.2 12.6 8.5 3.9 7.3 5.2 29.6 14.0 12.8 9.0 3.8 7.2 5.0 29.7 14.4 13.0 9.1 3.8 7.2 5.0 29.7 14.4 13.0 9.1 3.8 7.4 5.2 30.6 14.2 13.0 9.1 3.7 6.8 4.8 30.6 14.2 13.0 9.1 3.7 7.2 5.2 30.8 14.6 13.4 9.4 3.7 7.2 5.7 30.4 14.1 12.7 8.3 3.7 7.0 5.0 31.5 14.5 13.2 18.8 3.7 7.0 5.0 31.5 14.5 13.2 8.8 3.7 7.1 5.3 31.0 13.2 12.2 8.8 3.7 6.9 4.8 31.4 14.3 13.3 8.9 3.6 7.0 5.4	30.5 14.2 12.6 8.5 3.9 7.3 5.2 5.7 29.6 14.0 12.8 9.0 3.8 7.2 5.0 5.8 29.7 14.4 13.0 9.1 3.8 7.2 5.0 5.8 29.7 14.4 13.0 9.1 3.8 7.4 5.2 5.7 29.7 14.4 13.0 9.1 3.7 7.4 5.2 5.7 30.6 14.2 13.0 9.1 3.7 7.2 5.2 6.1 30.8 14.6 13.4 9.4 3.8 7.4 5.7 6.0 30.4 14.1 12.7 8.3 3.7 7.0 5.0 5.5 31.5 14.5 13.2 8.8 3.7 7.1 5.3 5.9 31.0 13.2 12.2 8.5 3.4 6.9 4.8 5.8 31.4 14.3 13.3 8.9 3.6 7.0 5.4 5.8 31.4 14.3 13.3 8.9 3.6 7.0	30.5 14.2 12.6 8.5 3.9 7.3 5.2 5.7 8.4 29.6 14.0 12.8 9.0 3.8 7.2 5.0 5.8 8.6 29.7 14.4 13.0 9.1 3.8 7.2 5.0 5.8 8.6 29.7 14.4 13.0 9.1 3.8 7.4 5.2 5.7 8.4 29.7 14.4 13.0 9.1 3.7 7.4 5.2 5.7 8.4 30.6 14.2 13.0 9.1 3.7 7.2 5.2 6.1 8.3 30.4 14.1 12.7 8.3 3.7 7.0 5.0 5.5 7.9 30.4 14.1 12.7 8.3 3.7 7.0 5.0 5.5 7.9 31.5 14.5 13.2 18.3 3.7 7.1 5.3 5.9 8.5 31.0 13.2 12.2 8.8 3.7 7.1 5.3 5.9 8.5 31.4 14.3 13.3 8.9 3.6 </td <td>30.5$14.2$$12.6$$8.5$$3.9$$7.3$$5.2$$5.7$$8.4$$6.3$$29.6$$14.0$$12.8$$9.0$$3.8$$7.2$$5.0$$5.8$$8.6$$6.5$$29.7$$14.4$$13.0$$9.1$$3.8$$7.4$$5.2$$5.7$$8.4$$6.6$$27.7$$13.2$$12.3$$8.7$$3.7$$7.4$$5.2$$5.7$$8.9$$6.6$$30.6$$14.2$$13.0$$9.1$$3.7$$7.2$$5.2$$6.1$$8.3$$6.4$$30.8$$14.6$$13.4$$9.4$$3.8$$7.4$$5.7$$6.0$$8.7$$6.8$$30.4$$14.1$$12.7$$8.3$$3.7$$7.0$$5.0$$5.5$$7.9$$6.3$$30.4$$14.1$$12.7$$8.3$$3.7$$7.0$$5.0$$5.5$$7.9$$6.3$$31.5$$14.5$$13.2$$8.8$$3.7$$7.1$$5.3$$5.9$$8.5$$6.5$$31.0$$13.2$$12.2$$8.8$$3.7$$7.1$$5.3$$5.9$$8.5$$6.5$$31.4$$14.3$$13.3$$8.9$$3.6$$7.0$$5.4$$6.5$$31.4$$14.3$$13.3$$8.9$$3.6$$7.0$$5.4$$6.5$$31.4$$14.3$$13.3$$8.9$$3.6$$7.0$$5.4$$6.9$$6.5$$31.4$$14.3$$13.3$$8.9$$3.6$$7.0$$5.4$$6.9$$6.5$</td>	30.5 14.2 12.6 8.5 3.9 7.3 5.2 5.7 8.4 6.3 29.6 14.0 12.8 9.0 3.8 7.2 5.0 5.8 8.6 6.5 29.7 14.4 13.0 9.1 3.8 7.4 5.2 5.7 8.4 6.6 27.7 13.2 12.3 8.7 3.7 7.4 5.2 5.7 8.9 6.6 30.6 14.2 13.0 9.1 3.7 7.2 5.2 6.1 8.3 6.4 30.8 14.6 13.4 9.4 3.8 7.4 5.7 6.0 8.7 6.8 30.4 14.1 12.7 8.3 3.7 7.0 5.0 5.5 7.9 6.3 30.4 14.1 12.7 8.3 3.7 7.0 5.0 5.5 7.9 6.3 31.5 14.5 13.2 8.8 3.7 7.1 5.3 5.9 8.5 6.5 31.0 13.2 12.2 8.8 3.7 7.1 5.3 5.9 8.5 6.5 31.4 14.3 13.3 8.9 3.6 7.0 5.4 6.5 31.4 14.3 13.3 8.9 3.6 7.0 5.4 6.5 31.4 14.3 13.3 8.9 3.6 7.0 5.4 6.9 6.5 31.4 14.3 13.3 8.9 3.6 7.0 5.4 6.9 6.5

Table 1.—External and cranial measurements of selected female specimens of seven species of Molossops.

ANNALS OF CARNEGIE MUSEUM

VOL. 49

Table 1.-Continued.

Length of mandible		11.7	11.8	11.9	11.6	11.9	11.1	10.6		10.7	10.5	11.0		10.4
Length of mandibular toothrow		6.4	6.4	6.8	6.6	6.3	6.3	6.2		6.2	6.3	6.6		6.3
upper molars Breadth across		7.2	7.1	7.5	7.5	7.7	6.8	7.2		7.0	7.1	7.4		7.1
Mastoid breadth		9.8	9.8	10.4	10.3	11.0	9.7	9.9		10.2	10.0	10.3		10.3
Lacrimal breadth		6.6	6.7	6.8	6.8	6.7	6.6	7.0		6.3	6.6	6.9		6.6
Length of Length of		6.0	5.8	6.2	6.1	5.8	5.7	5.7		5.7	5.9	5.9		5.7
Breadth of braincase		7.6	7.8	8.2	8.2	8.6	8.1	8.0		8.3	8.0	8.3		8.2
Postorbital Preadth		4.2	4.3	4.3	4.3	4.4	4.2	4.1		4.2	4.1	4.2		4.3
Zygomatic breadth	10	10.3	10.7	11.0	10.9	11.1	10.3	10.4		10.6	10.8	10.8		10.7
Condylobasal length	Molossops planirostris	15.0	14.4	15.3	15.0	15.4	14.5	14.7		14.8	15.0	15.3	ranus	14.9
Oreatest length Oreatest length	s plan	16.1	15.7	16.9	16.4	16.6	15.9	15.8		16.0	16.0	16.5	Molossops paranus	16.3
Length of forearm	lossop	30.8	31.3	33.9	32.5		32.1			31.4	32.3	33.0	tolosse	31.0
30 41040 1	M_{O}	Э.	ŝ	ŝ	ŝ		'n	ŝ		ŝ	ŝ	ί.Υ.	Ŷ	ŝ
Locality		Fuerte Olimpo, Olimpo,	rataguay Fuerte Olimpo, Olimpo, Paraguay	Rio Tapojoz, Igarapé, Brabo, Brazil	Rio Tapojoz, Igarapé, Brabo, Brazil	Rio Negro, near Manaos, Brazil	Rio Amazon, Faro, Brazil	Río Manapiare, San Juan,	T. F. Amazonas, Venezuela	Río Manapiare, San Juan, T. F. Amazonas, Venezuela	Río Manapiare, San Juan,	1. F. Amazonas, venezuela Río Manapiare, San Juan, T. F. Amazonas, Venezuela		59 km SE El Dorado, Bolivar, Venezuela
		0+	0+	0+	0+	0+	0+	0+		0+	0+	0+		0+
Catalog no. and sex		AMNH 234455	AMNH 234459	AMNH 94649	AMNH 94650	AMNH 79745	AMNH 93881	USNM 409512		USNM 409514	USNM 409516	USNM 409517		USNM 387744
C		AMN	AMN	AMN	AMN	AMN	AMN	NSN		NSN	NSN	NSN		NSN

WILLIAMS AND GENOWAYS-NEW SPECIES OF MOLOSSOPS

1980

77
- N
~~~
-33
5
-
~
- 22
0
15
$\sim$
- 1
- 1
•
ം
-
0
_c0

Jo figih of Mandible		12.4 11.8	12.1	11.8		10.4		13.8	14.6	15.6	16.0	14.0	14.8
Length of mandibular toothrow		6.9 6.9	6.6 6.6	6.4		6.0		8.3	8.3	8.6	8.8	7.7	8.3
upper molars Breadth across		7.7 7.4	7.5	7.7		I		9.1	9.4	9.4	9.4	8.9	9.4
Mastoid breadth		11.1	10.5	10.8		I		13.5	13.7	13.8	14.4	12.7	13.8
Lacrimal breadth		7.1 6.9	7.1	6.9		5.7		8.2	9.0	8.5	8.9	8.5	8.7
Length of Length of		6.3 6.2	5.9	5.9		5.4		7.3	7.3	7.4	7.5	6.9	7.4
Breadth of braincase		8.4 8.2	8.1 8.6	8.5		8.4		9.8	10.2	9.6	9.9	9.6	10.3
Postorbital Preadth		4.4 4.2	4.3 7 A.3	4.6		4.0		4.9	5.3	4.9	5.0	4.6	4.9
Zygomatic breadth		- 11.6	11.2	11.3	us*	10.0		13.7	14.1	14.2	14.3	12.9	13.8
Condylobasal Condylobasal	enhalli	15.8 15.7	15.5	15.4	itorian	13.4	orasus	18.5	19.4	19.0	19.3	17.7	18.8
Greatest length of skull	Molossops greenhalli	17.5 17.4	16.9 17 1	17.0	Molossops aequatorianus*	36.0 14.5	Molossops abrasus	20.4	21.1	21.5	21.2	19.4	20.7
Լength of քօւеагт	Moloss	33.4 33.9	34.5 37 3	32.5	lossop	36.0	Molos	41.3	41.5	41.0	42.0	41.4	43.5
Locality		Port-of-Spain, Trinidad Port-of-Spain, Trinidad	Port-of-Spain, Trinidad Grassolco Micharia Surinama	Grassalco, Nickerie, Suriname	W	Babahoyo, Los Ríos, Ecuador		59 km SE El Dorado, Bolivar, Venezuela	59 km Se El Dorado, Bolivar, Venezuela	Rio Tapojos, Igarapé, Brabo, Brazil	Rio Tapojos, Igarapé, Brabo, Brazil	Nova Gravada, São Paulo, Brazil	Sapucay, Paraguay
			0+ 0	+ 0+		0+		0+	0+	0+	O+		0+
Catalog no. and sex		AMNH 176285 AMNH 176286	AMNH 207071 CM 64378	CM 64379		MNCM 683		USNM 387742	USNM 387743	AMNH 94625	AMNH 94628	AMNH 236220	AMNH 114933

* Measurements from Cabrera (1917).

vol. 49

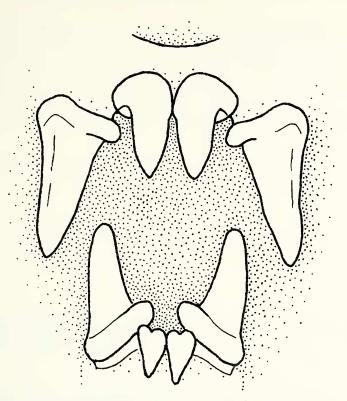



Fig. 2.—Front view of the skull of *Molossops neglectus* (CM 53864), showing upper and lower incisors and canines.

of size as indicated by external and cranial dimensions. In the 12 measurements examined, there was overlap only in postorbital breadth (Table 1; Vizotto and Taddei, 1976). The metacone of  $M^3$  may be better developed in *M. neglectus* than in *temminckii*; sagittal crest better developed in *neglectus*; helmet essentially lacking in *temmenckii*.

*M. neglectus* is distinguished from *abrasus*, *greenhalli*, *planirostris*, and *paranus*, by having only two lower incisors rather than the usual four found in the other species (a few individuals have only two incisors); third upper and lower molars more complex with a third commissure on  $M^3$  and two cusps on the talonid of  $M_3$  as compared with  $M^3$  composed of only two commissures (lacking postcentrocrista and metacone) and the talonid of  $M_3$  with only one cusp (hypoconid); ears pointed instead of rounded.

In addition, M. neglectus is much smaller than M. abrasus in all

measurements considered and lacks the distinct patches of fur along the forearm and metacarpels found in that species. In *planirostris*, the chin, neck, and a broad longitudinal band on the chest and abdomen are white or yellowish-white contrasting with the rust brown sides of the venter, whereas in *neglectus* the venter is uniformly Buffy Brown. *M. neglectus* is distinguished from *greenhalli* by having a helmet at the occiput (lacking in *greenhalli*), a sloping cranial profile (nearly flat profile in *greenhalli*), and a relatively longer distance from the nasal aperture to the lacrimal ridge.

The exact taxonomic status of *M. aequatorianus* is uncertain; it was placed in the subgenus *Molossops* by Cabrera (1958). However, it is easily distinguished from *M. neglectus* by its overall smaller size (Table 1).

*Etymology.*—The name *neglectus* is a Latin word meaning "overlook." We have chosen this name because the specimen was overlooked in our collection for more than two years before its significance was understood, and because this species has not been found previously in spite of extensive work on bats in Suriname and northern South America.

## DISCUSSION

Species of the genus Molossops (Goodwin, 1958) appear to fall into two distinct groups based on dental, external, and karvological characteristics. The amount of morphological distinctness is sufficient to warrant recognition of these groups as subgenera (see also Cabrera, 1958; Goodwin and Greenhall, 1961). The subgenus Cynomops consists of the species abrasus (see Carter and Dolan, 1978, for use of this name), greenhalli (Goodwin, 1958), planirostris (including milleri, Koopman, 1978), and *paranus* (previously, and also recently by Koopman, 1978, considered to be a subspecies of *planirostris*, but recognized as a distinct species by Handley, 1976, although he gave no basis for this recognition). The subgenus Molossops consists of the species temminckii, neglectus, and possibly aequatorianus. The exact status of M. aequatorianus, is uncertain because many of the characters needed for subgeneric placement are not given in the original description (Cabrera, 1917). However, Cabrera (1958) placed this species in the subgenus Molossops. If this placement is correct, aeguatorianus may represent a western subspecies of temminckii based on relative size.

*Molossops neglectus*, known only from the type locality, differs from *aequatorianus* and *temminckii* in being much larger. It is also geographically isolated from them. *M. aequatorianus* is known only from western Ecuador; *M. temminckii* is known from Uruguay, Paraguay, Argentina, Brazil, Bolivia, Peru, and Colombia (Vieira, 1955; Cabrera, 1958; Pine et al., 1970; Vizotto and Taddei, 1976; Koopman, 1978; also see list of Specimens Examined). It is possible that future

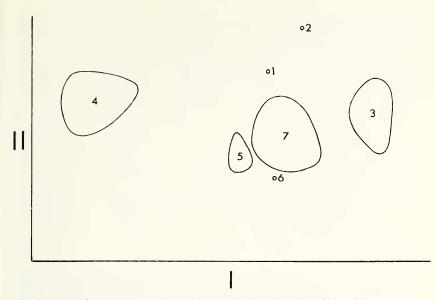



Fig. 3.—Plot of first two canonical variates, showing phenetic relationships among samples of female *Molossops*. Numbers 1, 2, and 3 (subgenus *Molossops*) represent *ne-glectus, aequatorianus, and temminckii, respectively.* Numbers 4, 5, 6, and 7 (subgenus *Cynomops*) represent *abrasus, greenhalli, paranus, and planirostris, respectively.* 

investigations in South America will show that M. neglectus and M. temminckii intergrade but we believe that the magnitude of the differences between the two and the lack of any evidence of intergradation warrant our recognition of M. neglectus as a distinct species.

Canonical analysis provides a mechanism for graphically representing phenetic relationships among samples with the characters weighted by variance-covariance analysis (Fig. 3). In Table 2, characters used in this analysis are listed from the most useful to the least useful in discriminating groups. Variates I and II in the analysis of species of *Molossops* accounted for 84.9% and 5.6% of the total dispersion, respectively. The character with a high canonical coefficient for Variate I (values greater than 1.5) was length of mandibular toothrow. Those with high negative values include, in decreasing order of value, zygomatic breadth, greatest length of skull, and postorbital constriction. In Variate II, positive values of more than 1.5 were exhibited by length of mandibular toothrow, breadth of braincase, and length of mandible; high negative values were shown for greatest length of skull and zygomatic breadth.

In Fig. 3, the seven species of Molossops are arrayed along Variate

Table 2.—Variables used in discriminant function analysis of South American female Molossops (mastoid breadth and breadth across upper molars omitted because these measurements not available for holotype of M. aequatorianus). Characters are listed in order of their usefulness in distinguished groups, with the character with the greatest between-groups variance and the least within-groups variance being selected first. Other traits are ranked using the same criteria. The statistics are recalculated at each step.

Step	Character	F-value	U-statistic
1	Zygomatic breadth	214.20	0.0258
2	Length of forearm	58.57	0.9975
3	Length of mandible	31.35	0.0036
4	Lacrimal breadth	21.26	0.0021
5	Length of mandibular toothrow	16.20	0.0013
6	Greatest length of skull	13.54	0.0008
7	Breadth of braincase	11.78	0.0005
8	Postorbital constriction	10.45	0.0003
9	Condylobasal length	9.48	0.0002
10	Length of maxillary toothrow	8.37	0.0002

I primarily on the basis of size with the small *M. temminckii* at the right of the plot and the large *M. abrasus* at the left. Each species forms a relatively distinct group. *M. planirostris* and *paranus* are the closest to each other of any of the taxa studied (the one specimen of *paranus* used was identified and reported by Handley, 1976). *M. ne-glectus* is well separated from the other members of the subgenus *Molossops* and is actually closer to *planirostris* and to a lesser extent *greenhalli*. This would be expected because these are the two species which are closest in size to *neglectus*. The position of the holotype of *M. aequatorianus* would tend to support the specific status of this species (it must be remembered, however, that this was the only specimen not measured by us).

Our specimen was a female that weighed 10 g and evinced no reproductive activity when captured on 10 August 1977. The habitat of the collecting locality was the boundary between savannah and a small forested area. The savannah had scattered shrubbery; the forested area was mostly secondary growth. Other species of bats collected at that locality included *Carollia perspicillata*, *Rhinophylla pumilio*, *Artibeus cinereus*, two large species of *Artibeus*, *Chiroderma trinitatum*, *C. villosum*, *Uroderma bilobatum*, *Vampyressa bidens*, and *Vampyrops helleri*.

## SPECIMENS EXAMINED

Molossops neglectus (1).—SURINAME: 1 km S, 2 km E Powaka, Suriname, 1 (CM). Molossops abrasus (8).—BRAZIL: Rio Tapojos, Igarapé Brabo, 4 (AMNH); Nova Gravada, São Paulo, 1 (AMNH). PARAGUAY: Sapucay, 2 (1 AMNH, 1 MCZ). VENE-ZUELA: 59 km SE El Dorado, Bolivar, 1 (USNM). 1980

Molossops greenhalli (5).—SURINAME: Grassalco, Nickerie, 2 (CM). TRINIDAD: Portof-Spain, 3 (AMNH).

Molossops paranus (1).—VENEZUELA: 59 km SE El Dorado, Bolivar, 1 (USNM). (Identification based upon Handley, 1976.)

Molossops planirostris (21).—BRAZIL: Rio Amazon, Faro, 1 (AMNH); Rio Madeira, Rosarinho, 1 (AMNH); Rio Negro, near Manaos, 1 (AMNH); Rio Tapojos, Aramanaý, 2 (AMNH); Rio Tapojos, Caxiricatuba, 1 (AMNH); Rio Tapojos, Igarapé Brabo, 2 (AMNH); Rio Tapojos, Pinhy, 2 (MCZ); Rio Tapojos, Tauary, 2 (MCZ). PARAGUAY: Fuerte Olimpo, Olimpo, 2 (AMNH). VENEZUELA: Maripa, 1 (AMNH); Río Manapiare, San Juan, T. F. Amazonas, 6 (USNM).

Molossops temminckii (32).—ARGENTINA: Río Porteño, 5 km S Estancia Sta. Catalina, Formosa, 3 (CM); Yuto, Jujuy, 4 (AMNH); El Breal, 6 km SW Santa Victoria, Salta, 3 (CM). BOLIVIA: 20 km S San Joaquín, 2 (AMNH). COLOMBIA: Finca Buque, Villavicencio, Meta, 2 (USNM). PARAGUAY: Mbovevo, 4 (AMNH); Misiones, 40 km S San Ignacio, Boquerón, 2 (AMNH); 75 km N Line Camp, Juan de Zalazar, Boquerón, 5 (UCONN); km 290 Trans-Chaco, Pres. Hayes, 2 (UCONN); Sapucay, 3 (USNM). PERÚ: Boca Río Curaraý, Loreto, 1 (AMNH). URUGUAY: Arroyo Negro, 15 km S Paysandu, Dept. Río Negro, 1 (AMNH).

#### ACKNOWLEDGMENTS

Our fieldwork in Suriname was supported by a grant from the M. Graham Netting Research Fund established by a grant from the Cordelia Scaife May Charitable Trust and by a grant from the Alcoa Foundation, Charles L. Griswold, President.

We would like to thank Dr. Joop P. Schulz and Henry A. Reichart, STINASU, for their assistance during our work and for making facilities of STINASU available to us. Without their help, our work in Suriname would have been impossible. Ferdinand L. J. Baal, Department of Forestry, issued our permits. M. de la Fuente assisted with fieldwork.

We would like to thank the following curators for allowing us to examine specimens housed in their collections: Karl F. Koopman, American Museum of Natural History (AMNH); John A. W. Kirsch, Museum of Comparative Zoology, Harvard University (MCZ); Ralph M. Wetzel, University of Connecticut (UCONN); Don E. Wilson and Charles O. Handley, Jr., National Museum of Natural History (USNM).

#### LITERATURE CITED

- CABRERA, A. 1917. Mamíferos del Viaje al Pacifico. Trab. Mus. Nac. Cienc. Nat. Madrid, Ser. Zool., 31:1-62.
  - —. 1958. Catalogo de los mamíferos de America del Sur. I. Metatheria—Unquiculata—Carnivora. Rev. Mus. Argentino Cienc. Nat. "Bernardino Rivadavia," Cienc. Zool., 4:iv + 307.
- CARTER, D. C., AND P. G. DOLAN. 1978. Catalogue of type specimens of Neotropical bats in selected European museums. Spec. Publ. Mus., Texas Tech Univ., 15:1– 136.
- GARDNER, A. L. 1977. Taxonomic implications of the karyotypes of *Molossops* and *Cynomops* (Mammalia: Chiroptera). Proc. Biol. Soc. Washington, 89:545–549.
- GENOWAYS, H. H., AND S. L. WILLIAMS. 1979. Records of bats (Mammalia: Chiroptera) from Suriname. Ann. Carnegie Mus., 48:323–335.
- GOODWIN, G. G. 1958. Three new bats from Trinidad. Amer. Mus. Novit., 1877: 1-6.

GOODWIN, G. G., AND A. M. GREENHALL. 1961. A review of the bats of Trinidad and Tobago. Bull. Amer. Mus. Nat. Hist., 122:187–302.

- HANDLEY, C. O., JR. 1976. Mammals of the Smithsonian Venezuelan Project. Brigham Young Univ. Sci. Bull., Biol. Ser., 10 (5):1-89.
- HUSSON, A. M. 1962. The bats of Suriname. Zool. Verhandelingen, 58:1-282.
- ------. 1978. The mammals of Suriname. Zool. Monogr., Rijksmuseum Nat. Hist., 2:xxiv + 1-569.
- KOOPMAN, K. F. 1978. Zoogeography of Peruvian bats with special emphasis on the role of the Andes. Amer. Mus. Novit., 2651:1–33.
- PHILLIPS, C. J. 1971. The dentition of glossophagine bats: development, morphological characteristics, variation, pathology, and evolution. Misc. Publ. Mus. Nat. Hist., Univ. Kansas, 54:1-138.
- PINE, R. H., I. R. BISHOP, AND R. L. JACKSON. 1970. Preliminary list of mammals of the Xavantina/Cachimbo Expedition (central Brazil). Trans. Royal Soc. Trop. Med. Hyg., 64:668–670.
- RIDGWAY, R. 1912. Color standards and color nomenclature. Privately published by the author, Washington, D.C., iii + 43 pp.
- THOMAS, O. 1920. A further collection of mammals from Jujuy. Ann. Mag. Nat. Hist., ser. 9, 5:188-196.
- VIEIRA, C. O. C. 1955. Lista remissiva dos mamíferos do Brasil. Arg. Zool. Est. São Paulo, 8:341–474.
- VIZOTTO, L. D., AND V. A. TADDEI. 1976. Notas sobre Molossops temminckii temminckii e Molossops planirostris (Chiroptera-Molossidae). Naturalia, 2:47-59.
- WILLIAMS, S. L., AND H. H. GENOWAYS. 1980. Results of the Alcoa Foundation-Suriname Expeditions. II. Additional records of bats (Mammalia: Chiroptera) from Suriname. Ann. Carnegie Mus., 49:213–236.